0%

LinkedHashMap源码(Jdk11.0.2)

LinkedHashMap源码分析。
源码基于最新的Jdk 11.0.2,不过好像和Jdk 8没什么大区别。
本文参考于链接

LinkedHashMap简介

  • 1,LinkedHashMap是线程不安全的,它是一个关联数组、哈希表,
  • 2,LinkedHashMap允许key为null,value为null
  • 3,它继承自HashMap,实现了Map<K,V>接口。其内部还维护了一个双向链表,在每次插入数据,或者访问、修改数据时,会增加节点、或调整链表的节点顺序,以决定迭代时输出的顺序

默认情况,遍历时的顺序是按照插入节点的顺序。这也是其与HashMap最大的区别。也可以在构造时传入accessOrder参数,使得其遍历顺序按照访问的顺序输出。
因继承自HashMap,所以HashMap上文分析的特点,除了输出无序,其他LinkedHashMap都有,比如扩容的策略,哈希桶长度一定是2的N次方等等。
LinkedHashMap在实现时,就是重写override了几个方法。以满足其输出序列有序的需求。

示例代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
LinkedHashMap lkh = new LinkedHashMap();
lkh.put("xiao", 19);
lkh.put("明", 18);
lkh.put("小红", 17);
lkh.put("小黑", 16);

Iterator<Map.Entry<String, String>> iterator = map.entrySet().iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
输出结果为:
xiao=19
明=18
小红=17
小黑=16

以下则是accessOrder=true的情况:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
LinkedHashMap lkh = new LinkedHashMap(10,0.75f,true);
lkh.put("xiao", 19);
lkh.put("明", 18);
lkh.put("小红", 17);
lkh.put("小黑", 16);
lkh.get("明");//这个元素会移动到内部链表的末尾
lkh.put("小红",20);//这个元素调整至末尾
lkh.get("小黑");//这个元素调整至末尾
lkh.put(null,null);//插入新的节点
lkh.put("小张",21);//插入新的节点
Iterator<Map.Entry<String, String>> iterator = lkh.entrySet().iterator();
while (iterator.hasNext()) {
System.out.println(iterator.next());
}
输出结果:
xiao=19
明=18
小红=17
小黑=16
null=null
小张=21

如上代码所示,

LinkedHashMap的节点
LinkedHashMap的节点Entry<K,V>继承自HashMap.Node<K,V>,在其基础上扩展了一下。改成了一个双向链表

1
2
3
4
5
6
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}

这两个变量分别代表双向链表的头尾。

1
2
transient LinkedHashMap.Entry<K,V> head;
transient LinkedHashMap.Entry<K,V> tail;

构造函数

1
2
3
4
5
final boolean accessOrder;
public LinkedHashMap() {
super();
accessOrder = false;
}

accessOrder默认是false,默认是false,则迭代时输出的顺序是插入节点的顺序。若为true,则输出的顺序是按照访问节点的顺序。
为true时,可以在这基础之上构建一个LruCach。这是LinkedHashMap的一个重要应用。
指定初始化容量值得构造函数

1
2
3
4
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
}

指定初始容量,指定加载因子的构造函数

1
2
3
4
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}

指定初始容量,指定加载因子以及迭代输出节点的顺序的构造函数

1
2
3
4
5
6
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

利用另一个LinkedHashMap来构建一个新的LinkedHashMap

1
2
3
4
5
public LinkedHashMap(Map<? extends K, ? extends V> m) {
super();
accessOrder = false;
putMapEntries(m, false);
}

小结:构造函数和HashMap相比,就是增加了一个accessOrder参数。用于控制迭代时的节点顺序。

增加元素
LinkedHashMap并没有重写任何put方法。但是其重写了构建新节点的newNode()方法,但是其重写了构建新节点的newNode()方法.
newNode()会在HashMap的putVal()方法里被调用,putVal()方法会在批量插入数据putMapEntries(Map<? extends K, ? extends V> m, boolean evict)或者插入单个数据public V put(K key, V value)时被调用。
LinkedHashMap重写了newNode(),在每次构建新节点时,通过linkNodeLast(p);将新节点链接在内部双向链表的尾部。

1
2
3
4
5
6
7
//在构建新节点时,构建的是`LinkedHashMap.Entry` 不再是`Node`.
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<>(hash, key, value, e);
linkNodeLast(p);
return p;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
 //将新增的节点,连接在链表的尾部
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
tail = p;
//集合之前是空的
if (last == null)
head = p;
else {
//将新节点连接在链表的尾部
p.before = last;
last.after = p;
}
}

以及还重写了HashMap专门预留给LinkedHashMap的afterNodeAccess() afterNodeInsertion() afterNodeRemoval() 方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
//回调函数,新节点插入之后回调 , 根据evict 和   判断是否需要删除最老插入的节点。如果实现LruCache会用到这个方法。
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
//LinkedHashMap 默认返回false 则不删除节点
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
//LinkedHashMap 默认返回false 则不删除节点。 返回true 代表要删除最早的节点。通常构建一个LruCache会在达到Cache的上限是返回true
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}

void afterNodeInsertion(boolean evict)以及boolean removeEldestEntry(Map.Entry<K,V> eldest)是构建LruCache需要的回调。

删除元素
LinkedHashMap也没有重写remove()方法,因为它的删除逻辑和HashMap并无区别。
但它重写了afterNodeRemoval()这个回调方法。该方法会在Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable)方法中回调,removeNode()会在所有涉及到删除节点的方法中被调用,上文分析过,是删除节点操作的真正执行者。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//在删除节点e时,同步将e从双向链表上删除
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//待删除节点 p 的前置后置节点都置空
p.before = p.after = null;
//如果前置节点是null,则现在的头结点应该是后置节点a
if (b == null)
head = a;
else//否则将前置节点b的后置节点指向a
b.after = a;
//同理如果后置节点时null ,则尾节点应是b
if (a == null)
tail = b;
else//否则更新后置节点a的前置节点为b
a.before = b;
}

查询
LinkedHashMap重写了get()和getOrDefault()方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}

public V getOrDefault(Object key, V defaultValue) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return defaultValue;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}

对比HashMap中的实现,LinkedHashMap只是增加了在成员变量(构造函数时赋值)accessOrder为true的情况下,要去回调void afterNodeAccess(Node<K,V> e)函数。
在afterNodeAccess()函数中,会将当前被访问到的节点e,移动至内部的双向链表的尾部。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;//原尾节点
//如果accessOrder 是true ,且原尾节点不等于e
if (accessOrder && (last = tail) != e) {
//节点e强转成双向链表节点p
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//p现在是尾节点, 后置节点一定是null
p.after = null;
//如果p的前置节点是null,则p以前是头结点,所以更新现在的头结点是p的后置节点a
if (b == null)
head = a;
else//否则更新p的前直接点b的后置节点为 a
b.after = a;
//如果p的后置节点不是null,则更新后置节点a的前置节点为b
if (a != null)
a.before = b;
else//如果原本p的后置节点是null,则p就是尾节点。 此时 更新last的引用为 p的前置节点b
last = b;
if (last == null) //原本尾节点是null 则,链表中就一个节点
head = p;
else {//否则 更新 当前节点p的前置节点为 原尾节点last, last的后置节点是p
p.before = last;
last.after = p;
}
//尾节点的引用赋值成p
tail = p;
//修改modCount。
++modCount;
}
}

值得注意的是,afterNodeAccess()函数中,会修改modCount,因此当你正在accessOrder=true的模式下,迭代LinkedHashMap时,如果同时查询访问数据,也会导致fail-fast,因为迭代的顺序已经改变。
containsValue
它重写了该方法,相比HashMap的实现,更为高效

1
2
3
4
5
6
7
8
9
 public boolean containsValue(Object value) {
//遍历一遍链表,去比较有没有value相等的节点,并返回
for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
V v = e.value;
if (v == value || (value != null && value.equals(v)))
return true;
}
return false;
}

对比HashMap,是用两个for循环遍历,相对低效。

1
2
3
4
5
6
7
8
9
10
11
12
13
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}

遍历
重写了entrySet()方法如下:

1
2
3
4
5
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es;
//返回LinkedEntrySet
return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> {
public final int size() { return size; }
public final void clear() { LinkedHashMap.this.clear(); }
public final Iterator<Map.Entry<K,V>> iterator() {
return new LinkedEntryIterator();
}
public final boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Node<K,V> candidate = getNode(hash(key), key);
return candidate != null && candidate.equals(e);
}
public final boolean remove(Object o) {
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>) o;
Object key = e.getKey();
Object value = e.getValue();
return removeNode(hash(key), key, value, true, true) != null;
}
return false;
}
public final Spliterator<Map.Entry<K,V>> spliterator() {
return Spliterators.spliterator(this, Spliterator.SIZED |
Spliterator.ORDERED |
Spliterator.DISTINCT);
}
public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
if (action == null)
throw new NullPointerException();
int mc = modCount;
for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after)
action.accept(e);
if (modCount != mc)
throw new ConcurrentModificationException();
}
}

最终的的EntryIterator:

1
2
3
4
final class LinkedEntryIterator extends LinkedHashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() { return nextNode(); }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
abstract class LinkedHashIterator {
//下一个节点
LinkedHashMap.Entry<K,V> next;
//当前节点
LinkedHashMap.Entry<K,V> current;
int expectedModCount;

LinkedHashIterator() {
//初始化时,next 为 LinkedHashMap内部维护的双向链表的扁头
next = head;
//记录当前modCount,以满足fail-fast
expectedModCount = modCount;
//当前节点为null
current = null;
}
//判断是否还有next
public final boolean hasNext() {
//就是判断next是否为null,默认next是head 表头
return next != null;
}
//nextNode() 就是迭代器里的next()方法 。
//该方法的实现可以看出,迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。
final LinkedHashMap.Entry<K,V> nextNode() {
//记录要返回的e。
LinkedHashMap.Entry<K,V> e = next;
//判断fail-fast
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
//如果要返回的节点是null,异常
if (e == null)
throw new NoSuchElementException();
//更新当前节点为e
current = e;
//更新下一个节点是e的后置节点
next = e.after;
//返回e
return e;
}
//删除方法 最终还是调用了HashMap的removeNode方法
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}

值得注意的就是:nextNode() 就是迭代器里的next()方法 。
该方法的实现可以看出,迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。
而双链表节点的顺序在LinkedHashMap的增、删、改、查时都会更新。以满足按照插入顺序输出,还是访问顺序输出。

总结

LinkedHashMap相对于HashMap的源码比,是很简单的。因为大树底下好乘凉。它继承了HashMap,仅重写了几个方法,以改变它迭代遍历时的顺序。这也是其与HashMap相比最大的不同。
在每次插入数据,或者访问、修改数据时,会增加节点、或调整链表的节点顺序。以决定迭代时输出的顺序。

  • accessOrder ,默认是false,则迭代时输出的顺序是插入节点的顺序。若为true,则输出的顺序是按照访问节点的顺序。为true时,可以在这基础之上构建一个LruCache.
  • LinkedHashMap并没有重写任何put方法。但是其重写了构建新节点的newNode()方法.在每次构建新节点时,将新节点链接在内部双向链表的尾部
  • accessOrder=true的模式下,在afterNodeAccess()函数中,会将当前被访问到的节点e,移动至内部的双向链表的尾部。值得注意的是,afterNodeAccess()函数中,会修改modCount,因此当你正在accessOrder=true的模式下,迭代LinkedHashMap时,如果同时查询访问数据,也会导致fail-fast,因为迭代的顺序已经改变。
  • nextNode() 就是迭代器里的next()方法 。该方法的实现可以看出,迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。而双链表节点的顺序在LinkedHashMap的增、删、改、查时都会更新。以满足按照插入顺序输出,还是访问顺序输出。
  • 它与HashMap比,还有一个小小的优化,重写了containsValue()方法,直接遍历内部链表去比对value值是否相等。
1
2
codehsjss
kl